Hyper-Rectangular and k-Nearest-Neighbor Models in Stochastic Discrimination

نویسندگان

  • Iryna Skrypnyk
  • Tin Kam Ho
چکیده

— The stochastic discrimination (SD) theory considers learning as building models of uniform coverage over data distributions. Despite successful trials of the derived SD method in several application domains, a number of difficulties related to its practical implementation still exist. This paper reports analysis of simple examples as a first step towards presenting the practical implementation issues, such as model generation and preliminary estimations to set parameters. Two implementations using different methods for model generation are discussed. One uses the nearest neighbor approach to maintain the projectability condition, the other constructs hyper-rectangular regions by randomly selecting subintervals in each dimension. Analysis of these implementations shows that for high-dimensional data, parallel model generation with the nearest neighbor approach is a favorable alternative to the interval model generation with random manipulation of the feature subspaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms

A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006